Abstract

We present a new algorithm based on binary quadratic forms to factor integers of the form N = pq 2. Its heuristic running time is exponential in the general case, but becomes polynomial when special (arithmetic) hints are available, which is exactly the case for the so-called NICE family of public-key cryptosystems based on quadratic fields introduced in the late 90s. Such cryptosystems come in two flavours, depending on whether the quadratic field is imaginary or real. Our factoring algorithm yields a general key-recovery polynomial-time attack on NICE, which works for both versions: Castagnos and Laguillaumie recently obtained a total break of imaginary-NICE, but their attack could not apply to real-NICE. Our algorithm is rather different from classical factoring algorithms: it combines Lagrange’s reduction of quadratic forms with a provable variant of Coppersmith’s lattice-based root finding algorithm for homogeneous polynomials. It is very efficient given either of the following arithmetic hints: the public key of imaginary-NICE, which provides an alternative to the CL attack; or the knowledge that the regulator of the quadratic field $\mathbb{Q}(\sqrt{p})$ is unusually small, just like in real-NICE.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.