Abstract

By a theorem of L. Redei if a finite abelian group is a direct product of its subsets such that each subset has a prime number of elements and contains the identity element of the group, then at least one of the factors must be a subgroup. The content of this paper is that this result holds for certain infinite abelian groups, too. Namely, for groups that are direct products of finitely many Pruferian groups and finite cyclic groups of prime power order, belonging to pairwise distinct primes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.