Abstract

We construct simplified quantum circuits for Shor's order-finding algorithm for composites N given by products of the Fermat primes 3, 5, 17, 257, and 65537. Such composites, including the previously studied case of 15, as well as 51, 85, 771, 1285, 4369, … have the simplifying property that the order of a modulo N for every base a coprime to N is a power of 2, significantly reducing the usual phase estimation precision requirement. Prime factorization of 51 and 85 can be demonstrated with only 8 qubits and a modular exponentiation circuit consisting of no more than four CNOT gates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.