Abstract

Objective: This study aims to optimize the timolol maleate (TM) nanoparticle prepared by ionic gelation method using the factors of pectin (PC), calcium chloride (CC), and chitosan (CS) concentrations with the responses of entrapment efficiency, particle size, and polydispersity index using 23 factorial design.
 Methods: TM nanoparticle suspensions were obtained by mixing of PC (0,4-0,6% (w/v)), CC (0,2-0,4% (w/v)), and CS (0,01-0,02% (w/v)) with TM concentration of 0,02% w/v. Each mixture was then tested for entrapment efficiency, particle size, and polydispersity index. The test results were analyzed with 23 factorial design using Design-Expert software in order to determine the optimum formula.
 Results: The optimization study showed that all of the factors influenced the responses significantly (p<0.05) based on the analysis of variance (ANOVA) of the suggested models. The R2value and the adequate precision value of the three models were more than 0.7 and 4, respectively. The difference between Adjusted R-Squared and Predicted R-Squared value were less than 0.200. The optimum condition of TM nanoparticle was suggested at the desirability value of 0.839 with the concentration of PC, CC, and CS of 0,4% (w/v), 0,2% (w/v), and 0,01% (w/v), respectively. The entrapment efficiency, particle size, and polydispersity index of the optimum condition were 24.791±2.84%, 274.867±14.45 nm, and 0.634±0.066, respectively.
 Conclusion: The 23factorial design has been proved as the suitable method to determine the optimum condition that yields the good results of the entrapment efficiency, particle size, and polydispersity index of the TM-loaded nanoparticle prepared by ionic gelation method.

Highlights

  • Timolol maleate (TM) is a β-blocker agent which has a promising alternative in the treatment of infantile hemangioma (IH), a benign vascular tumor that frequently occurs in infants with the prevalence of approximately 4-10% in the first year of life [1, 2]

  • This study aims to observe the effect of PC, calcium chloride (CC), and CS concentrations on the entrapment efficiency, particle size, and polydispersity index of the timolol maleate-loaded nanoparticle manufactured with ionic gelation method

  • The concentration of PC, CC, and CS were used as factors due to the fact that the process of polymeric nanoparticle preparation is influenced by the concentration of polymers and cross-linking agents [12,13,14]

Read more

Summary

Introduction

Timolol maleate (TM) is a β-blocker agent which has a promising alternative in the treatment of infantile hemangioma (IH), a benign vascular tumor that frequently occurs in infants with the prevalence of approximately 4-10% in the first year of life [1, 2]. A polymeric nanoparticle is one of the drug carriers that can be used in the formulation of a topical dosage form It possesses several abilities such as protecting the drug trapped inside the nano-sized particle from degradation or denaturation and decreasing the potency of systemic absorption by providing sustained release of drug from the dosage form [4]. The nanoparticle can be made by the method of ionic gelation, which is a method that utilized the electrostatic interaction between cationic and anionic polymer that spontaneously from nano-sized particles This advantageous method only requires simple stirring without the use of organic solvents that mostly possess toxic properties [5,6,7]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call