Abstract

A bottleneck in Laser Powder Bed Fusion (L-PBF) metal additive manufacturing (AM) is the quality inconsistency of its products. To address this issue without costly experimentation, computational multi-physics modeling has been used, but the effectiveness is limited by parameter uncertainties and their interactions. We propose a full factorial design and variable selection approach for the analytics of main and interaction effects arising from material parameter uncertainties in multi-physics models. Data is collected from high-fidelity thermal-fluid simulations based on a 2-level full factorial design for 5 selected material parameters. Crucial physical phenomena of the L-PBF process are analyzed to extract physics-based domain knowledge, which are used to establish a validation checkpoint for our study. Initial data visualization with half-normal probability plots, interaction plots and standard deviation plots, is used to assess if the checkpoint is being met. We then apply the combination of best subset selection and the LASSO method on multiple linear regression models for comprehensive variable selection. Analytics yield statistically and phyiscally validated findings with practical implications, emphasizing the importance of parameter interactions under uncertainty, and their relation to the underlying physics of L-PBF.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.