Abstract

The protease from Russell's viper venom that activates factor X (Stuart factor), factor IX (Christmas factor), and protein C was purified by gel filtration on Sephadex G-150 and QAE-Sephadex A-50 column chromatography. The purified enzyme migrated as a single band in sodium dodecyl sulfate-polyacrylamide gel electrophoresis with an apparent molecular weight of 79 000. A minimal molecular weight of 78 500 +/- 800 was determined by sedimentation equilibrium in the presence of 6 M guanidine hydrochloride. Upon reduction with 2-mercaptoethanol, a heavy chain (mol wt 59 000) and a light chain were observed. The light chain migrated as a single band (mol wt 19 000) in 7.5% polyacrylamide-sodium dodecyl sulfate gels but appeared as a doublet (mol wt 18 000 and 20 000) in 10% polyacrylamide-sodium dodecyl sulfate gels. The amino-terminal end of the heavy chain was heterogeneous and contained isoleucine, valine and serine. The amino-terminal sequence of the light chain was Val-Leu-Asp. The factor X activator contained 13% carbohydrate including 6.0% hexose, 1.7% N-acetyleneuraminic acid, and 5.3% galactosamine. Most of the carbohydrate was found to be present in the heavy chain, although some was also observed in both forms of the light chain. The factor X activator had no esterase activity toward benzoyl-Phe-Val-Arg-p-nitroanilide or benzoylarginine ethyl ester and was not inhibited by 0.05 M diisopropyl phosphorofluoridate. These data indicate that factor X activator from Russell's viper venom is a highly specific protease composed of one heavy chain and one light chain, and these chains are held together by a disulfide bond(s).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call