Abstract

Soluble antigens complexed with immunoglobulin G (IgG) antibodies can induce robust adaptive immune responses in vitro and in animal models of disease. Factor VIII immune complexes (FVIII-ICs) have been detected in individuals with hemophilia A and severe von Willebrand disease following FVIII infusions. Yet, it is unclear if and how FVIII-ICs affect antibody development over time. In this study, we analyzed internalization of FVIII complexed with epitope-mapped FVIII-specific IgG monoclonal antibodies (MAbs) by murine bone marrow-derived dendritic cells (BMDCs) in vitro and antibody development in hemophilia A (FVIII-/-) mice injected with FVIII-IC over time. FVIII complexed with 2-116 (A1 domain MAb), 2-113 (A3 domain MAb), and I55 (C2 domain MAb) significantly increased FVIII uptake by BMDC but only FVIII/2-116 enhanced antibody titers in FVIII-/- mice compared to FVIII alone. FVIII/4A4 (A2 domain MAb) showed similar FVIII uptake by BMDC to that of isolated FVIII yet significantly increased antibody titers when injected in FVIII-/- mice. Enhanced antibody responses observed with FVIII/2-116 and FVIII/4A4 complexes in vivo were abrogated in the absence of the FVIII carrier protein von Willebrand factor. These findings suggest that a subset of FVIII-IC modulates the humoral response to FVIII in an epitope-dependent manner, which may provide insight into the antibody response observed in some patients with hemophilia A.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call