Abstract

Simple SummaryUnder normal conditions, blood coagulation is suppressed to prevent thrombosis. However, during inflammatory conditions such as injury or disease conditions, the protein “tissue factor (TF)” is expressed on the surface of the cells and is also released into the bloodstream within cell-derived vesicles called “microvesicles”. TF appears first at the site of trauma which makes TF suitable for determining the extent of damage and instructing cells to proliferate and repair, or if severely damaged, to die. The relationship between cancer and thrombosis was reported in the early part of the 19th century. Cancer cells and particularly those with aggressive tendencies have the ability to produce, and then optimise the amount of TF on the cell, in order to maximise the pro-survival and proliferative properties of this protein. This study has demonstrated some of the mechanisms by which cells control excessive amounts of TF, to levels ideal for tumour survival and growth.Procoagulant activity of tissue factor (TF) in response to injury or inflammation is accompanied with cellular signals which determine the fate of cells. However, to prevent excessive signalling, TF is rapidly dissipated through release into microvesicles, and/or endocytosis. To elucidate the mechanism by which TF signalling may become moderated on the surface of cells, the associations of TF, fVII/fVIIa, PAR2 and caveolin-1 on MDA-MB-231, BxPC-3 and 786-O cells were examined and compared to that in cells lacking either fVII/fVIIa or TF. Furthermore, the localisation of labelled-recombinant TF with cholesterol-rich lipid rafts was explored on the surface of primary human blood dermal endothelial cells (HDBEC). Finally, by disrupting the caveolae on the surface of HDBEC, the outcome on TF-mediated signalling was examined. The association between TF and PAR2 was found to be dependent on the presence of fVIIa. Interestingly, the presence of TF was not pre-requisite for the association between fVII/fVIIa and PAR2 but was significantly enhanced by TF, which was also essential for the proliferative signal. Supplementation of HDBEC with exogenous TF resulted in early release of fVII/fVIIa from caveolae, followed by re-sequestration of TF-fVIIa. Addition of labelled-TF resulted in the accumulation within caveolin-1-containing cholesterol-rich regions and was also accompanied with the increased assimilation of cell-surface fVIIa. Disruption of the caveolae/rafts in HDBEC using MβCD enhanced the TF-mediated cellular signalling. Our data supports a hypothesis that cells respond to the exposure to TF by moderating the signalling activities as well as the procoagulant activity of TF, through incorporation into the caveolae/lipid rafts.

Highlights

  • The release of a factor, derived from injured tissue and capable of inducing blood coagulation, was recorded as early as 1834 [1,2]

  • We have previously shown that disruption of cholesterol-rich micro-domains prevents protease-activated receptor 2 (PAR2)-mediated alterations in cell surface tissue factor activity [31]

  • The lower level of association observed between tissue factor (TF) and fVIIa, in comparison to other measurements, suggests that the complex formation between PAR2 and either of these proteins is not contingent on conditions that are essential for the initiation of coagulation

Read more

Summary

Introduction

The release of a factor, derived from injured tissue and capable of inducing blood coagulation, was recorded as early as 1834 [1,2]. Our recent studies have shown that the accumulation of TF in endothelial cells can induce apoptosis [12,13,14]. Both proliferative and pro-apoptotic signalling arising from

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call