Abstract
Background Factor VII-activating protease (FSAP) is a multifunctional circulating plasma serine protease involved in thrombosis and vascular remodeling processes. The Marburg I single-nucleotide polymorphism (MI-SNP) in the FSAP-coding gene is characterized by low proteolytic activity, and is associated with increased rates of stroke and carotid stenosis in humans. Objectives To determine whether neointima formation after vascular injury is increased in FSAP-/- mice. Methods and Results The neointimal lesion size and the proliferation of vascular smooth muscle cells (VSMCs) were significantly enhanced in FSAP-/- mice as compared with C57BL/6 control mice after wire-induced injury of the femoral artery. Accumulation of leukocytes and macrophages was increased within the lesions of FSAP-/- mice at day 3 and day 14. Quantitative zymography demonstrated enhanced activity of gelatinases/matrix metalloproteinase (MMP)-2 and MMP-9 within the neointimal lesions of FSAP-/- mice, and immunohistochemistry showed particular costaining of MMP-9 with accumulating leukocytes. Using intravital microscopy, we observed that FSAP deficiency promoted the intravascular adherence and the subsequent transmigration of leukocytes in vivo in response to chemokine ligand 2 (CCL2). CCL2 expression was increased in FSAP-/- monocytes but not in the vessel wall. There was no difference in the expression of platelet-derived growth factor (PDGF-BB). Conclusions FSAP deficiency causes an increase in CCL2 expression and CCL2-mediated infiltration of leukocytes into the injured vessel, thereby promoting SMC proliferation and migration by the activation of leukocyte-derived gelatinases. These results provide a possible explanation for the observed association of the loss-of-function MI-SNP with vascular proliferative diseases.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.