Abstract
The universal algebraic literature is rife with generalisations of discriminator varieties, whereby several investigators have tried to preserve in more general settings as much as possible of their structure theory. Here, we modify the definition of discriminator algebra by having the switching function project onto its third coordinate in case the ordered pair of its first two coordinates belongs to a designated relation (not necessarily the diagonal relation). We call these algebras factor algebras and the varieties they generate factor varieties. Among other things, we provide an equational description of these varieties and match equational conditions involving the factor term with properties of the associated factor relation. Factor varieties include, apart from discriminator varieties, several varieties of algebras from quantum and fuzzy logics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.