Abstract
This paper proposes a high dimensional factor multivariate stochastic volatility (MSV) model in which factor covariance matrices are driven by Wishart random processes. The framework allows for unrestricted specification of intertemporal sensitivities, which can capture the persistence in volatilities, kurtosis in returns, and correlation breakdowns and contagion effects in volatilities. The factor structure allows addressing high dimensional setups used in portfolio analysis and risk management, as well as modeling conditional means and conditional variances within the model framework. Owing to the complexity of the model, we perform inference using Markov chain Monte Carlo simulation from the posterior distribution. A simulation study is carried out to demonstrate the efficiency of the estimation algorithm. We illustrate our model on a data set that includes 88 individual equity returns and the two Fama–French size and value factors. With this application, we demonstrate the ability of the model to address high dimensional applications suitable for asset allocation, risk management, and asset pricing.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.