Abstract
This paper investigates the implications of time‐varying betas in factor models for stock returns. It is shown that a single‐factor model (SFMT) with autoregressive betas and homoscedastic errors (SFMT‐AR) is capable of reproducing the most important stylized facts of stock returns. An empirical study on the major US stock market sectors shows that SFMT‐AR outperforms, in terms of in‐sample and out‐of‐sample performance, SFMT with constant betas and conditionally heteroscedastic (GARCH) errors, as well as two multivariate GARCH‐type models. Copyright © 2016 John Wiley & Sons, Ltd.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.