Abstract
<h3>Abstract</h3> Factor graph optimization (FGO) recently has attracted attention as an alternative to the extended Kalman filter (EKF) for GNSS-INS integration. This study evaluates both loosely and tightly coupled integrations of GNSS code pseudorange and INS measurements for real-time positioning, using both conventional EKF and FGO with a dataset collected in an urban canyon in Hong Kong. The FGO strength is analyzed by degenerating the FGO-based estimator into an “EKF-like estimator.” In addition, the effects of window size on FGO performance are evaluated by considering both the GNSS pseudorange error models and environmental conditions. We conclude that the conventional FGO outperforms the EKF because of the following two factors: (1) FGO uses multiple iterations during the estimation to achieve a robust estimation; and (2) FGO better explores the time correlation between the measurements and states, based on a batch of historical data, when the measurements do not follow the Gaussian noise assumption.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.