Abstract

ABSTRACTIn this article, we propose an innovative approach for modeling spatial dependence among losses from various geographical locations. The proposed model converts the challenging task of modeling complex spatial dependence structures into a relatively easier task of estimating a continuous function, of which the arguments can be the coordinates of the locations. The approach is based on factor copula models, which can capture various linear and nonlinear dependence. We use radial basis functions as the kernel smoother for estimating the key function that models all the spatial dependence structures. A case study on a thunderstorm wind loss dataset demonstrates the analysis and the usefulness of the proposed approach. Extensions to spatiotemporal models and to models for discrete data are briefly introduced, with an example given for modeling loss frequency with excess zeros.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.