Abstract

AbstractMacroeconomic forecasting using factor models estimated by principal components has become a popular research topic with many both theoretical and applied contributions in the literature. In this paper we attempt to address an often neglected issue in these models: The problem of outliers in the data. Most papers take an ad-hoc approach to this problem and simply screen datasets prior to estimation and remove anomalous observations. We investigate whether forecasting performance can be improved by using the original unscreened dataset and replacing principal components with a robust alternative. We propose to use an estimator based on least absolute deviations (LAD) as this alternative and establish a tractable method for computing the estimator. In addition to this we demonstrate the robustness features of the estimator through a number of Monte Carlo simulation studies. Finally, we apply the estimator in a simulated real-time forecasting exercise to test its merits. We use a newly compiled dataset of US macroeconomic series spanning the period 1971:2–2012:10. Our findings suggest that the chosen treatment of outliers does affect forecasting performance and that in many cases improvements can be made using a robust estimator such as the proposed LAD estimator.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.