Abstract

This paper considers a factor-augmented regression model in the presence of structural change. We propose a two-step procedure to estimate the coefficients of explanatory variables. We show that when the number of units (N) and the number of periods (T) are large and comparable, the proposed two-step estimator is T-consistent and has the same limiting distribution as if the unobservable factors were observed. Monte Carlo simulations confirm our theoretical results and show good finite sample performance of the two-step estimator.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.