Abstract
Air pollution poses a significant threat to public health and the environment in urban areas worldwide. In the context of urban air quality, nitrogen oxides (NOx), comprising nitrogen dioxide (NO2) and nitric oxide (NO), stand out as key pollutants with well-documented adverse effects. The city of Madrid, as the capital and largest urban center of Spain and the third largest of Europe, is no exception to the challenges posed by NOx pollution. Most of the recent literature on forecasting air pollution, and specifically on NOx, is based on the use of Neural Networks (NN). Little is known about the forecasting ability of factor models in this context. The main aim of this paper is to use Factor-Augmented Autoregressive Neural Networks (FA-ARNN-X) to predict future patterns of NOx pollutants in the territorial monitoring stations of Madrid, using lagged NOx values, meteorological variables and latent factors. The main results indicate that the proposed forecasting model provides statistically more accurate predictions of air pollution than its competing benchmarks and should be used by policymakers for more accurate air pollution monitoring.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.