Abstract
Rubin and Thayer (Psychometrika, 47:69-76, 1982) proposed the EM algorithm for exploratory and confirmatory maximum likelihood factor analysis. In this paper, we prove the following fact: the EM algorithm always gives a proper solution with positive unique variances and factor correlations with absolute values that do not exceed one, when the covariance matrix to be analyzed and the initial matrices including unique variances and inter-factor correlations are positive definite. We further numerically demonstrate that the EM algorithm yields proper solutions for the data which lead the prevailing gradient algorithms for factor analysis to produce improper solutions. The numerical studies also show that, in real computations with limited numerical precision, Rubin and Thayer's (Psychometrika, 47:69-76, 1982) original formulas for confirmatory factor analysis can make factor correlation matrices asymmetric, so that the EM algorithm fails to converge. However, this problem can be overcome by using an EM algorithm in which the original formulas are replaced by those guaranteeing the symmetry of factor correlation matrices, or by formulas used to prove the above fact.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.