Abstract

We suggest a procedure to improve the overall performances of several existing methods for determining the number of factors in factor analysis by using alternative measures of correlation: Pearson's, Spearman's, Gini's, and a robust estimator of the covariance matrix (MCD). We examine the effect of the choice of the covariance used on the number of factors chosen by the KG rule of one, the 80% rule, the Minimum average partial (MAP), and the Parallel Analysis Methodology (PAM). Extensive simulations show that when the entire (or part) of the data come from heavy-tail (lognormal) distributions, ranking the variables which come from non symmetric distributions improves the performances of the methods. In this case, Gini is slightly better than Spearman. The PAM and MAP procedures are qualitatively superior to the KG and the 80% rules in determining the true number of factors. A real example involving data on document authorship is analyzed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.