Abstract

Primary vascular tissues of angiosperm and gymnosperm roots have significant anatomical differences. In gymnosperms, lack of protophloem sieve elements indicates a lengthy parenchymatous pathway for nutrient transport to the root apical meristem (RAM). Because F-actin is an essential component of transport in parenchyma cells, the distribution of F-actin was determined and compared among roots of several angiosperm and gymnosperm species. Roots were chemically fixed and sectioned by hand to enable rapid production of many sections for labeling F-actin with phalloidin. In angiosperm and gymnosperm root tips, relative intensity of F-actin labeling was highest in primary vascular tissues. Parenchyma cells in and around protophloem tended to have more F-actin while cells in cortical and protoxylem tissues tended to have less. In gymnosperms, phloem parenchyma was intensely labeled for several millimeters distal to the root apical meristem (RAM), and the F-actin is mostly composed of bundles that lie parallel to the root longitudinal axis. This orientation differed from the multidirectional arrangement of F-actin filaments in cortical cells. In angiosperms, intense F-actin labeling of pericycle and phloem parenchyma cells occurred around the first mature sieve elements. F-actin is concentrated in the vascular cylinder, commonly in primary phloem parenchyma. In gymnosperms, the absence of sieve elements suggests that cytoplasmic streaming has a role in some aspect of phloem transport or unloading. In angiosperms, the region of intense F-actin labeling in the phloem parenchyma is limited to the extreme terminal portion of primary phloem where unloading of the earliest mature sieve elements occurs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call