Abstract
It has been discovered that plant pathogens produce effectors that spread via plasmodesmata (PD) to allow modulation of host processes in distal uninfected cells. Fusarium oxysporum f. sp. lycopersici (Fol) facilitates effector translocation by expansion of the size-exclusion limit of PD using the Six5/Avr2 effector pair. How other fungal pathogens manipulate PD is unknown. We recently reported that many fungal pathogens belonging to different families carry effector pairs that resemble the SIX5/AVR2 gene pair from Fol. Here, we performed structural predictions of three of these effector pairs from Leptosphaeria maculans (Lm) and tested their ability to manipulate PD and to complement the virulence defect of a Fol SIX5 knockout mutant. We show that the AvrLm10A homologs are structurally related to FolSix5 and localize at PD when they are expressed with their paired effectors. Furthermore, these effectors were found to complement FolSix5 function in cell-to-cell mobility assays and in fungal virulence. We conclude that distantly related fungal species rely on structurally related paired effector proteins to manipulate PD and facilitate effector mobility. The wide distribution of these effector pairs implies Six5-mediated effector translocation to be a conserved propensity among fungal plant pathogens. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.