Abstract

Core symptoms in patients with schizophrenia spectrum disorders (SSD), like hallucinations or ego-disturbances, have been associated with a failure of internal forward models to predict the sensory outcomes of self-generated actions. Importantly, forward model predictions must also be able to flexibly recalibrate to changing environmental conditions, for example to account for additional delays between action and outcome. We investigated whether transcranial direct current stimulation (tDCS) can be used to improve these sensorimotor temporal recalibration mechanisms in patients and healthy individuals. While receiving tDCS on the cerebellum, temporo-parietal junction, supplementary motor area, or sham stimulation, patients with SSD and healthy control participants were repeatedly exposed to delays between actively or passively elicited button presses and auditory outcomes. Effects of this procedure on temporal perception were assessed with a delay detection task. Similar recalibration outcomes and faciliatory effects of cerebellar tDCS on recalibration were observed in SSD and healthy individuals. Our findings indicate that sensorimotor recalibration mechanisms may be preserved in SSD and highlight the importance of the cerebellum in both patients and healthy individuals for this process. They further suggest that cerebellar tDCS could be a promising tool for addressing deficits in action-outcome monitoring and related adaptive sensorimotor processes in SSD.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.