Abstract

Previous studies have revealed that a form of synaptic potentiation resembling long-term potentiation (LTP) occurs at various sites as a result of stimulation that leads to kindling. The present study evaluates what role this synaptic potentiation plays in the development of kindling following periodic stimulation of the entorhinal cortex of the rat. LTP was repetitively induced in the pathway from the entorhinal cortex (EC) to the dentate gyrus (DG) by daily stimulation with high frequency trains that led to LTP, but did not evoke afterdischarge (AD). Subsequently, animals received stimulation designed to induce kindling (that led to AD), and this stimulation was delivered once per day until kindled seizures were induced. While repetitive induction of LTP was not sufficient to produce kindling, prior induction of LTP significantly increased the rate of subsequent kindling as evidenced by a decrease in the number of kindling stimulations required to induce the kindled state. As a group, animals that had received stimulation designed to induce LTP developed kindled seizures after an average of 10 AD's, whereas a control group that had received non-potentiating stimulation required 25 AD's. These results indicate that LTP at EC-DG synapses cannot represent the mechamism of kindling following EC stimulation. However, synaptic potentiation at this site can facilitate the development of epileptogenesis in response to subsequent activation of the perforant path.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call