Abstract

Using sharp microelectrode recording from CA1 pyramidal neurons of the adult mouse hippocampal slice preparation, we studied the modulatory action of the selective neurokinin 1 (NK1) receptor agonist substance P methyl ester (SPME), a peptidase-resistant analogue of the peptide substance P (SP), on cholinergic responses. While SPME (0.1-1 microM) had only slight effects on membrane potential and input resistance of CA1 neurons, it largely and reversibly enhanced the membrane depolarization and oscillatory activity induced by the cholinergic agonist carbachol (CCh; 0.1-100 microM). This effect of SPME was prevented by the selective NK1 receptor antagonist SR 140333 (4 microM). In about half of the tested neurons the action of SPME was preserved in tetrodotoxin (TTX) solution, suggesting that it partly occurred at the level of pyramidal cells. Cholinergic slow excitatory postsynaptic potentials (sEPSPs) were reversibly enhanced by SPME which increased their amplitude and prolonged any associated bursting activity. This action was also blocked by SR 140333. The present results suggest that SPME largely enhances cholinergic activity in the mouse hippocampus, an effect which can help to explain, in this brain area, the recently reported facilitation of seizures by SP.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call