Abstract

Water clusters (H2O)20 and (H2O)25 are explored at the Møller-Plesset second-order perturbation (MP2) level of theory. Geometry optimization is carried out on favorable structures, initially generated by the temperature basin paving (TBP) method, utilizing the fragment-based molecular tailoring approach (MTA). MTA-based stabilization energies at the complete basis set limit are accurately estimated by grafting the energy correction using a smaller basis set. For prototypical cases, the minima are established via MTA-based vibrational frequency calculations at the MP2/aug-cc-pVDZ level. The potential of MTA in tackling large clusters is further demonstrated by performing geometry optimization at MP2/aug-cc-pVDZ starting with the global minimum of (H2O)30 reported by Monte Carlo (MC) and molecular dynamics (MD) investigations. The present study brings out the efficacy of MTA in performing computationally expensive ab initio calculations with minimal off-the-shelf hardware without significant loss of accuracy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.