Abstract

A tip-enhanced Raman spectroscopy (TERS) system based on an atomic force microscope (AFM) and radially polarized laser beam was developed. A TERS probe with plasmon resonance wavelength matching the excitation wavelength was prepared with the help of dark-field micrographs. The intrinsic photoluminescence (PL) from the silver (Ag)-coated TERS probe induced by localized surface plasmon resonance contains information about the near-field enhanced electromagnetic field intensity of the probe. Therefore, we used the intensity change of Ag PL to evaluate the stability of the Ag-coated probe during TERS experiments. Tracking the Ag PL of the TERS probe was helpful to detect probe damage and hotspot alignment. Our setup was successfully used for the TERS imaging of single-walled carbon nanotubes, which demonstrated that the Ag PL of the TERS probe is a good criterion to assist in the hotspot alignment procedure required for TERS experiments. This method lowers the risk of contamination and damage of the precious TERS probe, making it worthwhile for wide adoption in TERS experiments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.