Abstract

Mixed matrix membranes (MMMs) have exhibited advantages in overcoming the trade-off effect, although it is still intensively demanded in the design of multifunctional fillers to improve CO2 separation performance. At present, MMMs with transport channels present an effective strategy to obtain ultrahigh CO2 permselectivity. In this work, Pebax-based MMMs was fabricated by incorporating nanocapsules (NCs), whose exterior, interior and transverse shell surfaces contained abundant carboxylic acid groups. NCs, similar to vesicles in cells, provide favorable physical and chemical microenvironments to the constructed CO2 transport channels, enhancing the CO2 permselectivity via both a facilitated transport mechanism and a solution-diffusion mechanism. CO2 permselectivity of MMMs doped with 20 wt % NCs surpassed the 2008 Robeson limit; an increase in CO2 permeability was up to 1431 ± 35 Barrer for pure gas, which was a 362% enhancement from the pure membrane, and an increase of the CO2/CH4 and CO2/N2 ideal selectivities to 46 ± 1.4 and 69 ± 2.7, corresponding to 44% and 23% enhancements from the pure membrane, respectively. This study provides an ingenious strategy to enhance the gas permselectivity of MMMs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.