Abstract

A new theoretical model describing the exchange of water and solutes between the renal medullary interstitium and the microcirculation was developed to account for the presence of water channels and urea transporters, both of which were recently identified in the descending vasa recta (DVR) of the renal medulla. Small solutes, which are excluded from the water channels, are freely exchanged through a parallel pathway shared with water. The transcapillary concentration gradients of sodium and urea across the water channels induce water efflux from DVR, whereas classic Starling forces across the shared pathway favor volume uptake by DVR. Because small solute concentration gradients are large in the inner medulla, the model predicts net water removal from DVR, in agreement with experimental observations. The descending and ascending vasa recta (AVR) function as a countercurrent exchanger, the efficiency of which is inversely related to the net amount of solute taken up by the medullary microcirculation. Our results indicate that net solute removal from the medulla is governed by convective uptake into AVR and thus depends predominantly on the parameters affecting AVR transcapillary volume flux. The simulations also suggest that the urea transporter significantly enhances the exchange of both sodium and urea and might serve to abrogate a reduction in exchanger efficiency imparted by water channels.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call