Abstract

Exenatide is a peptide based anti-diabetic prescription medication. Until now, the literature has lacked a comprehensive atom-specific molecular characterization for this complex large peptide by NMR spectroscopy that can be effortlessly and rapidly utilized for biopharmaceutical structural veracity. Peptide structure verification by NMR is challenging and cumbersome when reliant on traditional proton-based methodology (through-bond and through-space proton connectivity) alone due to increasing complexity, low signal dispersion, and overlap. These challenges are overcome by using 2D heteronuclear (1H-13C and 1H-15N) maps that not only allow unambiguous signal assignment, but also condense the structural verification information within simplified peptide amide and carbon fingerprint maps. Here we report such simplified amide and carbon fingerprint maps for exenatide; made possible by the first ever comprehensive heteronuclear (1H,13C, and 15N) atom specific assignment of exenatide. These heteronuclear assignments were obtained without any isotopic enrichments i.e. at natural abundance, and hence are easily deployable as routine procedures. Furthermore, we compare the 2D heteronuclear maps of exenatide to a chemically identical peptide differing only in the isomerism of the Cα position of the first amino acid, [dHis1]-exenatide, to demonstrate the uniqueness of these maps. We show that despite deliberate changes in pH, temperature, and concentrations, the differences between the amide maps of exenatide and [dHis1]-exenatide are retained. The work presented here not only provides a facilitated structure verification of exenatide but also a framework for heteronuclear NMR data acquisition and signal assignment of large peptides, at natural abundance, in creating their respective unique 2D fingerprint maps.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.