Abstract

The discoveries of carbon and inorganic fullerene-like nanotubes with a wide spectra of possible applications have stimulated multi- and interdisciplinary research activities. In this paper, we prepared MoS2 overlayers supported on coaxial carbon nanotubes and investigated lithium storage/release properties in relation to their structural properties. The coaxial nanoarchitecture was successfully synthesized by a designed solution-phase route in the low temperature range, which was characterized by X-ray powder diffraction (XRD), high resolution transmission electron microscopy (HRTEM), Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS). The reversible lithium-storage behaviors involved in the nanoarchitecture were elucidated by means of various techniques including galvanostatic methods, cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS). A thorough investigation of the composition−structure−property relationships of the coaxial nanoarchitecture highlighted the importance of the underlying carbon nanotubes in improving the lithium storage/release properties of the MoS2 sheath through a unique synergy at the nanoscale. This work should be notably significant for the design of new multifunctional nanoarchitectures by the wet-chemistry process, applicable for energy conversion and storage of the future.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.