Abstract

Polyethylene (PE) separators have been the most popular option for commercial Li-ion batteries because of their uniform pore size, high tensile strength, low cost, and electrochemical stability. Unfortunately, PE separators generally suffer from significant dimensional changes at high temperatures, which frequently results in serious safety problems. In this regard, the integration of inorganic nanoparticles with PE separators has been considered to be a promising approach. Here, inorganic nanoparticles with a hierarchical pore structure were coated on a conventional polymer separator. The resultant composite separator exhibited superior Li ion transportation compared with separators coated with mesopore-only nanoparticles or conventional nonporous nanoparticles. The mesopores and macropores act synergistically to improve the electrolyte uptake and ionic conductivity of the inorganic nanoparticles, while other positive aspects such as their thermal and mechanical properties are still maintained.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call