Abstract

Flow-flash and double-flash studies of the reaction of fully reduced bo-type quinol oxidase with oxygen have revealed that a single turnover of the enzyme proceeds much faster than mammalian cytochrome c oxidase. Facilitated intramolecular electron transfer in the bo-type oxidase with k ⪢ 5 × 10 4 s −1 at pH 7.4 and 20°C is responsible for this fast turnover. The kinetics of this reaction indicates that the oxygen reduction does not require electron exchange between quinol oxidase molecules, each having three metal centers. Thus, a bound quinol in the fully reduced enzyme is suggested to be an electron source for complete reduction of dioxygen into water supplementing electrons provided by the metal centers. A single turnover of the quinol oxidase yields a novel spectral species with a Soret maximum at 415 nm corresponding to a ‘pulsed’ state of mammalian cytochrome c oxidase.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.