Abstract

Facilitated endogenous repair is a novel approach to tissue engineering that avoids the ex vivo culture of autologous cells and the need for manufactured scaffolds, while minimizing the number and invasiveness of associated clinical procedures. The strategy relies on harnessing the intrinsic regenerative potential of endogenous tissues using molecular stimuli, such as gene transfer, to initiate reparative processes in situ. In the simplest example, direct percutaneous injection of an osteogenic vector is used to stimulate bone healing. If necessary, additional progenitor cells and space-filling scaffolds can be provided by autologous bone marrow, muscle, fat, and perhaps other tissues. These can be harvested, processed, and reimplanted by simple, expedited, intraoperative procedures. Examples of repair of experimental osseous and osteochondral lesions in laboratory animals are described. If successful, these strategies will provide methods for tissue regeneration that are not only effective but also inexpensive, safe, and clinically expeditious. Although orthopaedic examples are given here, the technology should be more generally applicable.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.