Abstract

Maternal sleep deprivation (MSD) has been suggested to be associated with increased frequency of neurodevelopmental disorders in offspring in both humans and animal models. However, the underlying cellular and molecular mechanism is still unclear. We have recently reported that MSD at different stages of pregnancy impairs the emotional and cognitive functions, and suppresses hippocampal CA1 long-term potentiation (LTP) in the offspring rats. Here, we report that the MSD induced LTP impairment at the CA1 hippocampus of the offspring rats is associated with increased long-term depression (LTD) and reduced expression of postsynaptic GluA2-containing α-amino-3-hydroxy-5-methyl-isoxazole-4-propionic acid receptors (AMPARs). Importantly, we found that inhibition of AMPAR endocytosis by a synthetic peptide Tat-GluA23Y (3 μmol/kg, i.p.) not only increased level of AMPARs and reduced LTD, but also restored LTP. Moreover, treatment with Tat-GluA23Y peptide markedly alleviated the MSD-induced impairments of spatial learning and memory; and decreased depressive- and anxiety-like behaviors in the offspring. Together, our findings suggest that the MSD-induced postsynaptic AMPAR endocytosis causally contributes to the impairments of hippocampal synaptic plasticity, thereby disrupting the emotional and cognitive functions in the offspring.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call