Abstract

Semiconductor-employed photocatalytic CO2 reduction has been regarded as a promising approach for environmental-friendly conversion of CO2 into solar fuels. Herein, TiO2/Cu2O composite nanorods have been successfully fabricated by a facile chemical reduction method and applied for photocatalytic CO2 reduction. The composition and structure characterization indicates that the Cu2O nanoparticles are coupled with TiO2 nanorods with an intimate contact. Under light illumination, all the TiO2/Cu2O composite nanorods enhance the photocatalytic CO2 reduction. In particular, the TiO2/Cu2O-15% sample exhibits the highest CH4 yield (1.35 µmol g-1 h-1) within 4 h irradiation, and it is 3.07 and 15 times higher than that of pristine TiO2 nanorods and Cu2O nanoparticles, respectively. The enhanced photoreduction capability of the TiO2/Cu2O-15% is attributed to the intimate construction of Cu2O nanoparticles on TiO2 nanorods with formed p-n junction to accelerate the separation of photogenerated electron-hole pairs. This work provides a reference for rational design of a p-n heterojunction photocatalyst for CO2 photoreduction.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call