Abstract

In this work, different facile synthesis routes were developed to create cuprite-based catalyst systems for the amperometric detection of glucose, allowing us to evaluate the impact of important electrode fabrication parameters on the glucose sensing performance. Using homogenous precipitation routes based on a redox system, two differently shaped cuprite particles—skeletons and polyhedrons—could be obtained. Furthermore, a novel electroless deposition technique was introduced that does not require sensitization and activation pretreatments, allowing for the direct modification of the glassy carbon. This technique produced electrodes with dense thin film consisting of merged, octahedral cuprite crystals. Afterward, these materials were tested as potential catalysts for the electrochemical detection of glucose. While the catalyst powders obtained by precipitation required Nafion® to be attached to the electrode, the thin film synthesized using electroless plating could be realized with and without additive. Summarizing the results, it was found that Nafion® was not required to achieve glucose selectivities typically observed for cuprite catalysts. Also, the type of catalyst application (direct plating vs. ink drop coating) and the particle shape had a pronounced effect on the sensing performance. Compared to the thin film, the powder-type materials showed significantly increased electrochemical responses. The best overall performance was achieved with the polyhedral cuprite particles, resulting in a high sensitivity of 301μAmmol−1cm−2, a linear range up to 298μmolL−1 and a limit of detection of 0.144μmolL−1.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.