Abstract

In this work, a facile controlled synthesis of plasmonic photocatalyst, Ag@AgCl hollow cubic cage with the tuning of nanoframe structures was reported. AgCl cubical hollow nanoframes were primarily prepared using sacrificial NaCl template protocol. Ion exchange reaction between Ag+ in the solution and NaCl, in presence of poly(vinylpyrrolidone) (PVP) led to continuous nucleation followed by growth of AgCl on the surface of sacrificial NaCl template. The tuning of AgCl nanoframe structures was obtained by changing the AgNO3 concentration in the reactions. Afterwards, ethylene glycol assisted reduction of AgCl, produced Ag@AgCl, the metal@semiconductor composite with the homogeneous distribution of Ag nanoparticles on the surface of the AgCl hollow nanoframes. Efficient sunlight-driven photocatalytic activity to degrade Methylene blue (MB) (50 mL; 10 mg/L) with these Ag@AgCl hollow frames was also demonstrated. The plasmonic photocatalysts were exhibited photodegradation rates about 0.098–0.184 min−1 with high catalytic activity and recyclability for five cycles. Additionally, active species entrapping experiments were performed and a possible mechanism for the enhanced photocatalytic performance of the synthesized plasmonic photocatalyst was also proposed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.