Abstract
Zinc oxide (ZnO), a wide band-gap semiconductor, has received a great interest due to its potential applications in various fields both as nanostructures and as sintered compacts. In this study, we report on the synthesis of the ZnO nanostructures and facilitation of their sintering for the production of fine-grained dense compacts. The facile synthesis of gram scale ZnO nanostructures was achieved by thermal decomposition of zinc acetate dihydrate (Zn(Ac)2·2H2O) or Zn(Ac)2·2H2O/graphite mixtures at 300°C for 12h. Thermal decomposition of Zn(Ac)2 resulted in the formation of mostly ZnO nanoparticles with wurtzite structure along with ZnO nanorods, while the addition of graphite significantly promoted the growth of ZnO nanowires. Microstructural and phase properties of the obtained ZnO nanostructures were determined by means of X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and high resolution TEM (HRTEM) techniques, all of which revealed the successful synthesis of high quality ZnO nanostructures. In addition to synthesis and characterization of the ZnO nanostructures, we report on the enhancement of their sinterability by a subsequent cryogenic milling for a short duration of 5min. As a result of the applied cryo-milling, fabrication of highly dense (96.2%) sintered compacts with fine grain sizes (572nm) could be achieved after pressureless sintering at 1000°C for 2h.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.