Abstract
Synthesis of nanoparticles by eco-friendly method pulled an extensive concern worldwide due its biocompatibility and wide range of applications as catalysts, microbicidal agents, cancer treatment, sensors etc. Though different chemical methods available for preparation of ZnO nanoparticles, synthesis by utilizing plant material is an excellent substitute and green method as well. The present study describes preparation of ZnO nanoparticles by low-cost green synthetic way using Actinidia deliciosa (kiwi) fruit peel extract and its excellent biological and catalytic properties. The synthesized nanoparticles were well characterized by UV visible spectroscopy, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Scanning electron microscopy (SEM), Transmission electron microscopy (TEM) and Energy-dispersive X-ray spectroscopy (EDAX). The bactericidal activity of the ZnO nanoparticles was determined by using Staphylococcus aureus (S. aureus), while mechanism of cell death was studied by SEM images. Superior anticancer activity was also observed in inhibiting the colon cancer cells (HCT116) by the ZnO nanoparticles. In addition, ZnO nanoparticles showed efficient photocatalytic activity towards degradation of p-bromophenol, about 96.3% within 120 min. Furthermore, phytotoxicity of the intermediate products was analyzed using Vigna radiata (V. radiata) as a model plant. About 8.0% of germination index (GI) was observed in pure p-BP while it increased to 82.3%, and exhibited that the detoxification of p-BP was attained after 120 min of degradation. Thus, the present study demonstrates ZnO nanoparticles prepared from simple, rapid, inexpensive, eco-friendly and efficient green method gives alternative root for biomedicine and wastewater treatment technologies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.