Abstract

In this article, Z-scheme NiO/α-MoO3 p-n heterojunction is successfully synthesized by a facile hydrothermal route. The phase and nanostructures are researched through a series of characterizations, such as XRD, SEM, TEM, EDX, XPS and DRS. It is confirmed that the NiO nanoparticles are deposited homogeneously on one dimensional α-MoO3 nanobelts and p-n heterojuction is constructed at the interface of α-MoO3 and NiO. Photocatalytic activity of the as-synthesized photocatalysts is investigated by photodegradation of methylene blue (MB) under simulated solar light irradiation. Compared with bare α-MoO3, the NiO/α-MoO3 p-n heterojunction exhibits significantly improved photocatalytic activity and photostability for MB degradation. The improvement in the photocatalytic performance can be attributed to the optimization of the charge transport pathway offered by Z-scheme heterojunctions, which can promote the effective separation of electron-hole pairs. The results indicate that Z-scheme NiO/α-MoO3 p-n heterojunction is a novel and efficient photocatalyst with potential application for the removal of organic contaminant in wastewater.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.