Abstract

Tungsten carbide nanorods (WC-NRs) are synthesized by pseudomorphic transformation of chemically synthesized W3O8 nanorods using a high-temperature method. The WC-NRs was introduced into dye sensitized solar cell (DSSC) as counter electrode (CE) catalyst to replace the expensive platinum (Pt). The synthesized WC-NRs were characterized by field emission scanning electron microscopy (FESEM), BET surface area analysis and powder X-ray diffraction (PXRD) measurements. The electrochemical properties of WC-NRs counter electrode were studied using electrochemical impedance spectroscopy (EIS) techniques. The photovoltaic performance of the DSSC with WC-NRs counter electrode was evaluated under simulated standard global AM 1.5G sunlight (100mW/cm2). The solar to electrical energy conversion efficiency (η) of the WC-NRs with binder and binder free based DSSC was found to be 1.92% and 0.59% respectively. The cell performance can be attributed to the WC-NRs network, catalytic redox activity and 1-D efficient charge-transfer network. Such WC-NRs configuration as CE provides a potential feasibility for counter electrodes in DSSC applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call