Abstract

Among the existing energy storage devices, supercapacitors have attracted an increasing attention in recent years. In this work, two different transition metal (M = Cu, Co) oxides grafted on graphitic carbon nitride (GCN) nanosheets were successfully synthesized through single-step pyrolysis assisted route. The as-prepared nanocomposites exhibit high specific surface area and demonstrate the excellent electrochemical performances for supercapacitors. The CoO/GCN-NS and CuO/GCN-NS electrodes facilitate rapid Faradaic reaction in aqueous 6.0 M KOH electrolyte, and deliver the highest specific capacitance of 458 F g−1 and 154.5 F g−1 at 0.5 A g−1. The CoO/GCN-NS and CuO/GCN-NS electrodes were integrated with commercial activated carbon (AC) to fabricate asymmetric supercapacitors, which exhibits high specific capacitance of 124.75 F g−1 (CoO/GCN-NS//AC) and 84.28 F g−1 (CuO/GCN-NS//AC) at 0.5 A g−1 and higher cycling performance (about 96% retention after 2000 cycles). An asymmetric supercapacitor device could power a light emitting diode (LED), demonstrating that metal oxide/GCN-NS is a potential electrode material for energy storage applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call