Abstract
The selective hydrogenation of 5-hydroxymethylfurfural (HMF) to 2,5-bis(hydroxymethyl)furan (BHMF) using the atomically dispersed supported copper catalyst is investigated. The hydrotalcite oxide supported copper materials (Cu(x)HTO) are facilely prepared by coprecipitating metal precursors in a methanolic solution under a tuned pH. The surface characterization involving PXRD, TEM, H2/N2O-TPR, and XAS reveals unequivocal evidence for the presence of the atomically dispersed copper on HTO surface. XAS specifically indicates the formation of mononuclear copper species, and H2/N2O-TPR strongly supports the copper atoms of Cu(5)HTO are evenly distributed in 99% dispersion. Moreover, the reduced Cu(5)HTO (r-Cu(5)HTO) enables to completely hydrogenate HMF to BHMF under mild conditions, in comparison to the poor reactivity catalyzed by the hydrotalcite oxide supported copper nanoparticles (r-Cu(4)@HTO). The dramatic enhancement of HMF hydrogenation catalyzed by r-Cu(5)HTO can be attributed to the fine distribution of copper atoms which are situated homogeneously over HTO surface as well as chemically reactive for the carbonyl group.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.