Abstract

A different approach to synthesize visible-light-active sulfur (S)-doped reduced titania (S-TiO2-x) using thiourea dioxide as both the S source and reductant was developed. The structure, morphology, and optical and electronic properties of the as-prepared S-TiO2-x samples were examined by multiple techniques, such as X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy, ultraviolet-visible diffuse reflectance spectroscopy, Brunauer-Emmett-Teller and photocurrent measurements, and electrochemical impedance spectroscopy. The photocatalytic activity of S-TiO2-x was evaluated by photodegradation of organic Rhodamine B under visible-light irradiation. The degradation rate of Rhodamine B by S-TiO2-x obtained by calcination was about 31, 2.5, and 3.6 times higher than those of pure TiO2, pristine TiO2-x, and S-doped TiO2, respectively. In addition, the as-prepared S-TiO2-x exhibited long-term stable photocatalytic performance in the degradation of Rhodamine B under visible-light illumination. This report reveals a new approach to prepare stable and highly efficient solar light-driven photocatalysts for water purification.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.