Abstract

Abstract The synthesis of metal oxide composites with porous structures for supercapacitor application has drawn much attention owing to their high surface area and easy access of the electrolyte ions to the electrode surface through the pores of the active materials. A facile hydrothermal approach is suggested for the synthesis of porous CuCo2O4 composite sheets and their application as an active electrode material for supercapacitor application. Field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) measurements show the formation of porous CuCo2O4 composite sheets. BET surface area measurements show that the porous CuCo2O4 composite sheet has 69.44 m2 g−1 surface area, which is 4.7 times higher than quasi-spherical CuCo2O4 nanoparticles. The porous CuCo2O4 composite sheet delivered 1037 C g−1 specific capacity at 5 mV s−1. Additionally, the porous CuCo2O4 composite sheet retained 94% of its initial specific capacity after 5000 charge-discharge cycles at 10 A g−1 indicating an excellent cyclic stability. This excellent supercapacitive performance is attributed to the high surface area and enhanced ion transport through the pores of the CuCo2O4 sheets. This high specific capacity and excellent cyclic stability of the porous CuCo2O4 composite sheets prove to be a promising candidate for supercapacitor application.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.