Abstract

The "shuttle effect" of long-chain polysulfides and the low conductivity of elemental sulfur lead to the inferior cycling stability of lithium-sulfur batteries and imped their practical applications. Herein, Co3O4 nanoflakes with uniform macro pores distribution were synthesized via facile oil bath and calcination methods. Coupled with super P and coated on common polypropylene separators, they were expected to hinder the migration of lithium polysulfides (LiPSs) and accelerate the redox kinetics of polysulfides. Coin cells assembled with the Co3O4-super P interlayer exhibited a capacity of 760 mA h g-1 at 1 C, maintained 598 mA h g-1 after 350 cycles, and the decay rate of discharge capacity was only about 0.062% per cycle. Such high performance can be attributed to the synergistic effects between polar Co3O4 and conductive super P. The facile fabrication method and high performance make the Co3O4-super P interlayer a feasible material to apply in lithium-sulfur batteries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.