Abstract

We report a facile method toward preparation of conducting polymer-supported Pd nanoparticles by in situ reducing the palladium salt [Pd(NO3)2] on the surface of polyaniline (PANI) film/membrane. The palladium(0) particles distribute evenly on the PANI surfaces. The size and morphology of Pd particles are dependent on the nature of the substrate surfaces. The palladium (Pd) particles on the PANI membrane surfaces have a rough surface morphology with a size distribution of ∼200 nm, and the Pd particles on the PANI film have a smooth surface with a size distribution of ∼500 nm. These Pd particles are in fact conglomerates of much smaller nanoparticles with an average size distribution of 13 nm. Pd nanoparticles exhibit efficient catalytic activity toward hydrogenation of alkynes and cinnamaldehyde with high selectivities dominated by a kinetic mechanism. Moreover, our results suggest that the variation in particle morphology resulting from substrates leads to differences in their catalytic efficiency presum...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.