Abstract

Poly(p-phenylenediamine) (PpPD)/carboxylic acid-functionalized multiwalled carbon nanotubes (c-MWCNTs) nanocomposites were prepared by chemical oxidative polymerization using potassium persulfate (K2S2O8) as an oxidant. Field-emission scanning electron microscopy (FE–SEM) and field-emission transmission electron microscopy (FE–TEM) showed that a tubular layer of PpPD was coated on the surface of carbon nanotubes with a thickness of 10–20 nm. FT–IR analysis provided an evidence for the formation of nanocomposites. The thermal stability of nanocomposites was improved by addition of c-MWCNTs as confirmed by thermogravimetric analysis (TGA). XRD spectra showed that the crystalline nature of PpPD was not affected much by the addition of c-MWCNTs. As the content of c-MWCNTs was increased, the electrical conductivity of the nanocomposites increased due to the interaction between polymer and nanotubes that enhances electron delocalization.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call