Abstract

Pt nanoparticles immobilized on zirconium oxide (ZrO2) and porous carbons (Pt/ZrO2/PCs) tri-component nanohybrids derived from Pt/ metal–organic frameworks (MOFs) were synthesized. They were prepared by using Pt/MOFs as a template. Additionally, MOFs (UiO-66, a traditional MOFs) were used as ZrO2 and carbon sources without the need of additional precursors. The formation of these composite materials was confirmed through a comprehensive characterization such as transmission electron microscopy, X-ray diffraction, and Fourier transform infrared spectroscopy. The Pt/ZrO2/PCs show strong affinity toward the phosphate group and highly electrocatalytic activity for nitro compound on methyl parathion (MP) molecules. The high performance is owing to the combination of unique electrocatalytic activity of Pt species, excellent conductivity of PCs, and good adsorption properties of ZrO2 crystals for MP. The proposed Pt/ZrO2/PCs tri-component nanocomposite sensor realized the ultrasensitive detection of MP with a wide linear range between 3.8 × 10−9 and 1.14 × 10−2 mM and a low limit of detection of 1.45 × 10−9 mM. Therefore, it can be developed as an effective sensing platform for the detection of MP.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.