Abstract

Although carbon-supported platinum (Pt/C) has been generally used as a catalyst for the oxygen reduction reaction (ORR) in fuel cells, its practical application is limited by the corrosion reaction of the carbon support. Therefore, it is essential to develop new self-supported catalysts for the ORR. Noble metal aerogels represent highly promising self-supported catalysts with large specific surface area and excellent electrocatalytic activity. Classic sol-gel processes for aerogel synthesis usually take days due to the slow gelation kinetics. Here, we report a straightforward strategy to synthesize platinum-copper (PtCu) aerogels by reducing the metal salt solution with an excess of sodium borohydride at room temperature. The PtCu aerogels are formed in a relatively short time of 1 h through a rapid nucleation mechanism. The obtained PtCu aerogels have a highly porous structure with an appreciable topological surface area of 33.0 m2/g and mainly exposed (111) facets, which are favorable for the ORR. Consequently, the PtCu aerogels exhibit excellent ORR activity with a mass activity of 369.4 mA/mgPt and a specific activity of 0.847 mA/cm2, which are 2.6 and 3.3 times greater than those of Pt/C, respectively. The PtCu aerogels show remarkable ORR catalysis among all the noble metal aerogels that have been reported. The porous morphology and outstanding electrocatalytic activities of the PtCu aerogels illustrate their promising applications in fuel cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.